Convert apparent power (kVA) to reactive power (kVAR) for power factor correction and electrical system analysis. Calculate reactive power requirements accurately.
Power Quality | Version 2.1
Choose calculation method based on available data
Enter the total apparent power in kilovolt-amperes
Power factor range: 0.1 to 1.0 (0.8 is typical for industrial loads)
Inductive loads (motors) create lagging power factor
Reactive Power: 0 kVAR
Real Power: 0 kW
Apparent Power: 0 kVA
Power Factor: 0
Phase Angle: 0°
Enter values above to see detailed calculations
Calculating reactive power (kVAR) is a fundamental skill for power factor correction and system analysis. This guide breaks down the process into clear, manageable steps using a practical example, ensuring you can apply the concepts correctly and confidently.
First, visualize the Power Triangle. This is the foundation for all calculations.
There are two primary formulas to find kVAR, depending on the data you have.
For our example, we will analyze a small workshop with several induction motors.
System Parameters:
Our goal is to calculate the total reactive power (kVAR).
Using the first formula, we can find the kVAR directly from the kVA and Power Factor.
kVAR = 150 x sqrt(1 - 0.75²)Solving this gives you:
150 x sqrt(0.4375) = 150 x 0.661 = 99.2 kVAR.
To verify our result with the second method, we first need to find the real power (kW) in the system.
kW = kVA x PFPlugging in the values:
150 kVA x 0.75 PF = 112.5 kW.
Now use the second formula with the kW value we just found to confirm the kVAR.
kVAR = sqrt(150² - 112.5²)Solving this gives you:
sqrt(22500 - 12656.25) = sqrt(9843.75) = 99.2 kVAR.
Scenario: Calculate the reactive power for a workshop with an apparent power of 150 kVA and a power factor of 0.75.
Use this chart for quick estimates of reactive power (kVAR) based on total apparent power (kVA) and the system's power factor.
| Apparent Power (kVA) | kVAR @ 0.95 PF | kVAR @ 0.90 PF | kVAR @ 0.85 PF | kVAR @ 0.80 PF | kVAR @ 0.75 PF | kVAR @ 0.70 PF |
|---|---|---|---|---|---|---|
| 10 kVA | 3.1 kVAR | 4.4 kVAR | 5.3 kVAR | 6.0 kVAR | 6.6 kVAR | 7.1 kVAR |
| 25 kVA | 7.8 kVAR | 10.9 kVAR | 13.2 kVAR | 15.0 kVAR | 16.5 kVAR | 17.9 kVAR |
| 50 kVA | 15.6 kVAR | 21.8 kVAR | 26.4 kVAR | 30.0 kVAR | 33.1 kVAR | 35.7 kVAR |
| 100 kVA | 31.2 kVAR | 43.6 kVAR | 52.7 kVAR | 60.0 kVAR | 66.1 kVAR | 71.4 kVAR |
| 250 kVA | 78.0 kVAR | 109.0 kVAR | 131.8 kVAR | 150.0 kVAR | 165.3 kVAR | 178.5 kVAR |
| 500 kVA | 156.0 kVAR | 218.0 kVAR | 263.5 kVAR | 300.0 kVAR | 330.5 kVAR | 357.0 kVAR |
| 1000 kVA | 312.0 kVAR | 436.0 kVAR | 527.0 kVAR | 600.0 kVAR | 661.0 kVAR | 714.0 kVAR |
To calculate kVAR, you need to know the system's Power Factor (PF). The formula is:
For example, a 100 kVA system with a 0.8 PF has 60 kVAR of reactive power.
The amount of kVAR depends entirely on the Power Factor (PF).
Lower power factors result in higher, less efficient kVAR levels.
1 kVAR (Kilovolt-Ampere Reactive) is a unit of reactive power equal to 1,000 volt-amperes reactive.
It represents the "wasted" or non-working power that is necessary to create magnetic fields in motors and transformers.
Think of the power triangle: